

Sustainability in Micro-Electronics

Sense the power of light by ams OSRAM to support the world in going GREEN

Dr. Strauss, Joerg Executive Vice President Corporate Quality, Research & Development 03/06/2024

Structural growth in semiconductor core portfolio is driven by mega-trends and leading market positions

Growing from the core of sensor & emitter components by increasingly adding intelligence to drive system performance

Core Semiconductor Portfolio Target industries Megatrends **Digitalization Automotive** Sensors **Emitters** Intelligent sensors Intelligent Leading positions Energy **Industrial & Technology** efficiency & Leadership emitters Medical sustainability Innovation Mixed Signal **Smart Living** ICs Consumer (IoT)

Three ways we drive sustainability at ams OSRAM

Sustainable production

Driving resource efficiency and recycling in our component production

Energy & resource efficient components

Increased energy efficiency and lifetime span in microelectronic devices

Enabled applications

Creating sustainable value and improving lives through technology

Sustainable production ams OSRAM Regensburg

Standby energy

Reducing energy used by clean rooms and other processes during standby/maintenance

Material recycling

Enabling recycling of Ga, GaAs & Au

Heating & cooling

Heat pump installation and other initiatives

Impact at a glance

+20%

Throughput increase at lower power consumption

-20%

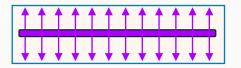
Industrial

-24% co₂

Ga, GaAs, Au, recycling water, air

N₂ and H₂ production

Enabling higher efficiency and lower cost


Air and water recycling

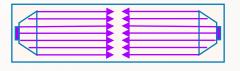
Feeding air back into clean rooms 25% wastewater savings

Energy efficient components, enabled applications UV-C LED disinfection

Conventional – Hg based

Hg UV-C Lamp based system

Source $\Phi_{\text{e_UV-C}}$: 19 W Power P_el: 55 W Air Flow: 78 m³/h Position: center -90%


Radiation needed

-30%

Potential energy saving

Hg

No Mercury pollution Innovation - LED

LED UV-C Lamp based system

 $\begin{array}{lll} \text{Source } \Phi_{\text{e_UV-C}}: & 2 \text{ W} \\ \text{Power P}_{\text{el}}: & 39 \text{ W} \\ \text{Air Flow:} & 78 \text{ m}^3\text{/h} \\ \text{Position:} & \text{center} \end{array}$

Only manufacturer in Europe Top 2 player globally

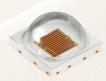
- Drinking water disinfection and recycling
- Surface treatment
- Air purification

Energy efficient components, enabled applications Agricultural lighting

83.2%

Wall plug efficiency (-50% electrical energy vs. traditional high pressure sodium lamps)

>102k


Hours of Q90 Lifetime ~30 years @10 hours/day

4C+W

Four wavelengths + Horti White to drive efficient photosynthesis and enable stable production yield

~4%

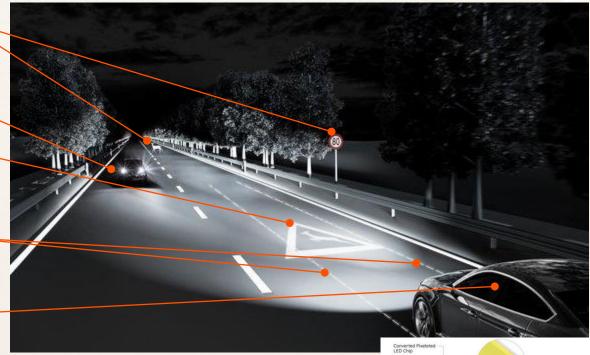
Higher efficacy due to light uniformity enabled by Batwing optics

Osconiq P 3737

Oslon Square Batwing

- Controlled growing environments to increase food product effectiveness ("feed the world")
- Addressing water shortage challenge and reducing fertilizer and pesticide need

Energy efficient components, enabled applications Automotive lighting

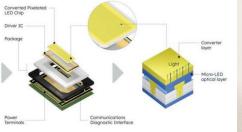

Advanced object spotting

Glare-free high beam

Geo-referenced symbol projection

Vehicle trajectory illumination for precise steering

User experience (coming home,...)


25.000+

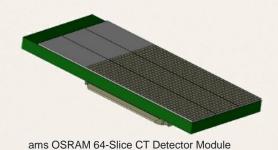
pixels resolution

Maximum efficiency

by dimming individual pixels (vs. alternative solutions <50% efficiency)

- Road safety, pedestrian safety
- Responsible driving
- Efficiency, heat and range (EV)

Energy efficient components, enabled applications


Medical imaging

-50%

lower x-ray dose

better quality

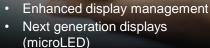
of image for better diagnostic

- Computer tomography
- Digital X-ray

... and far beyond

ams OSRAM applications across industries

Medical **Automotive** Industrial Consumer Projected lighting Smart surfaces Industrial automation Camera enhancement Advanced displays incl. Robotics microLED Spectral & light sensing Medical imaging Smart Living (IoT) Home Automation Dynamic forward & signal **Building Automation** lighting AR/VR glasses sensing & In-cabin sensing Outdoor lighting visualization ADAS/AD (LIDAR) Industrial lighting Personal & home care Vital signs monitoring Horticulture


UV-C* disinfection

Energy efficiency & sustainability

Digitalization

Supported by:

on the basis of a decision by the German Bundestag

